3D Printing
News Videos Newsletter Contact us
Home / News / Using AI and AM for Organoid Production
Revopoint MetroX: Blue Laser Line and Full-field Structured Light 3D Scanner

Using AI and AM for Organoid Production

October 15, 2022

Living organs for medical experimentation are pretty hard to come by, on account of human beings actually using them on a day to day basis. To rectify this, the concept of the organoid has been developed.

Functional Organ Models

Organoids are mini-versions of organs that replicate various biological functions, and they are grown in-vitro, in a petri dish or test tube or some other kind of container outside of the normal environment of the body.

Manufacturing of organoids has had its limitations however, as it has been difficult to demonstrate consistent and robust extraction of mature organoids from renewable cells.

This could be about to change though, thanks to a team of researchers from the Swanson School of Engineering at the University of Pittsburgh who have been awarded funding to further research into organoid production using AI and 3D printing.

organoids
In-vitro organoids. (Image credit: University of Pittsburgh)

The team of researchers, led by principal investigator Ipsita Banerjee, have been awarded $500,000 by the National Science Foundation to utilize artificial intelligence to accelerate the development of organoids, which has traditionally been heavily based on a trial-and-error approach. The team is multi-disciplinary and comes from various institutes at the University of Pittsburgh, the Allegheny Health Network, and Duquesne University.

New Method

Usually, organoids are created using a chemistry-based experimental approach, but the new method involves mechano-transduction pathways, or the process in which cells respond to mechanical stimuli, to regulate manufacturing while also exploiting cytoskeletal rearrangements that are part of the organoid phenotype.

For those who do not have a background in cellular biology, mechano-transduction is any of various mechanisms by which cells convert mechanical stimulus into electrochemical activity.

In this case, the mechano-transduction will be controlled by bioprinting the organoid phenotype, while machine learning models will identify signature cytoskeletal states associated with the phenotype. The AI will assist with accelerating development and will enhance accuracy in predictions of organoid behavior for further research.

“Our vision is to enable organoid technology to finally realize its potential in clinical research and drug development,” said Banerjee.

“This breakthrough research will benefit society and the healthcare system at large by creating a more efficient, effective and sustainable way to design these structures.”

organoid
Non-printed intestinal organoid. (Image credit: Meritxell Huch, PLOS Biology journal) <a href="http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002149, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=40325751" target="_blanc" rel="noopener">By Meritxell Huch</a>

The printed organoids will be used to conduct complex research on human tissue physiology, genetic diseases, organ-specific infectious diseases and cancer.

Organoids can be used for replicating functions of almost any organ, be it via the production of lung, mammary, liver, stomach, pancreas, and even cerebral organoids.

“Central to our goal of organoid manufacturing is the integration of bioprinting and artificial intelligence to enable automated and non-invasive learning of different types of organoids,” said Banerjee.

“Bioprinting also will enable us to scale up the production of these structures in quantity and quality over time, without the restrictions we currently face using traditional methods.”

The research will provide trainees with multidisciplinary skill sets, encompassing bioprinting, organoid engineering, imaging, and AI methods. The funding has been awarded as part of the National Science Foundation’s Future Manufacturing program.

nasa vascular challenge
Related Story
Two Teams Win NASA’s Vascular Tissue Challenge Using 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Swiss manufacturing automation firm SAEKI has secured $6.7 million in new funding, bringing its total funding to $8 million. The investment round was... read more »

News
SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Hospital Uses 3D Printed Models to Improve Surgical Planning

Hong Kong Eastern Hospital has developed new 3D printed models of newborn babies' lungs to help doctors practice treating pneumothorax, a potentially dangerous... read more »

Medical
Hospital Uses 3D Printed Models to Improve Surgical Planning

3D Printed Templates Guide Metal Formation Through Electroplating Process

A new manufacturing process combining 3D printing and electroplating has been developed to create complex metal structures with fine details. The hybrid method... read more »

News
3D Printed Templates Guide Metal Formation Through Electroplating Process

Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

The US Air Force is completing its evaluation of 3D-printed microvanes designed to reduce drag on C-17 Globemaster III transport aircraft. These small... read more »

Aerospace
Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

CoreTechnologie and Phasio have announced a new partnership to develop an automated solution for selective laser sintering (SLS) and multi jet fusion (MJF)... read more »

News
CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

Hands-on Review: Einstar VEGA Wireless 3D Scanner

the Einstar VEGA is an attractive feature-packed wireless device, allowing you to scan a range of differently sized items, both indoors, and outdoors.

News
Hands-on Review: Einstar VEGA Wireless 3D Scanner

Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Researchers at the Singapore University of Technology and Design (SUTD) have developed a new approach to 3D print complex bio-inspired structures using slow-curing... read more »

Materials
Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Elegoo Mars 5 Ultra Review – A Perfect Choice for Beginners

Elegoo has released the latest addition to their ever popular Mars line of resin 3D printers, in the form of the Mars 5... read more »

News
Elegoo Mars 5 Ultra Review - A Perfect Choice for Beginners

Minimizing Downtime in Additive Manufacturing Facilities

As an additive manufacturing company owner or manager, you would have a vested interest in minimizing downtime on the factory floor. Machine downtime... read more »

News
Minimizing Downtime in Additive Manufacturing Facilities

Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Puma's latest Mostro shoe collaboration with French designer Louis-Gabriel Nouchi is set to launch today, January 23, 2024. The new design transforms the... read more »

Fashion
Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
Anycubic

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing