3D Printing
News Videos Newsletter Contact us
Home / News / 3D Printed Blade Tip Enhances Wind Power Efficiency
Revopoint MetroX: Blue Laser Line and Full-field Structured Light 3D Scanner

3D Printed Blade Tip Enhances Wind Power Efficiency

August 14, 2024

Sandia National Laboratories, in collaboration with Wetzel Wind Energy Services and Stratasys Direct Inc., has designed an innovative turbine blade tip that could significantly improve the efficiency of wind energy production. This new design is part of the Additively Manufactured System Integrated Tip (AMSIT) project, which aims to integrate advanced technologies into wind turbine components, ultimately reducing the cost of electricity generated by wind turbines.

3D Printed Blade Tip Enhances Wind Power Efficiency
The AMSIT tip and winglet are precisely aligned with a 3D scan of the blade root (inset) and connected to a 3D-printed test article attached to a blade stub. Surface texturing and leading-edge protection are not depicted. (Photo by Brent Houchens)

A New Approach to Turbine Blade Design

The AMSIT project, funded by the U.S. Department of Energy’s Advanced Materials and Manufacturing Technologies Office, addresses several challenges currently faced in turbine blade manufacturing. These include issues with manual composite-fiber-epoxy processes, quality control problems leading to blade defects, erosion damage, and the high costs and complexities associated with transporting large blades.

The key innovation in this project is the use of 3D printing to create a modular blade tip. Brent Houchens, the principal investigator of the AMSIT project, explained, “3D printing offers a path to address all of these issues by integrating technologies. We considered a winglet to increase lift, surface texturing to reduce flow separation, and features to improve leading-edge erosion protection and lightning protection.”

This 3D-printed blade tip, designed for a 200 kilowatt-scale turbine with 13-meter blades, replaces about 15% of the traditional blade tip. The new design improves aerodynamic performance with an upwind winglet and surface texturing while also incorporating integrated protection against erosion and lightning. The modular nature of the design allows for easier and faster replacement of damaged tips, such as those struck by lightning, potentially reducing downtime and maintenance costs.

Point cloud scans
Point cloud scans captured the blades before and after removing their outer shells, ensuring that the new 3D-printed tips (left) align perfectly with the blade root (right). Researchers plan to use the blade root for testing various tip designs in the future. (Photo by Brent Houchens)

Impact on Wind Energy Costs

One of the main goals of the AMSIT project is to reduce the levelized cost of electricity (LCOE) over the lifetime of a wind turbine. Initial models indicate that the new blade tip design could decrease the LCOE by 3%-4% on average at wind speeds below 10 meters per second. This reduction is achieved without altering the maximum rated power of the turbines, allowing the AMSIT blades to be tested on existing machines.

The integration of 3D printing in turbine blade manufacturing also opens up new possibilities for exploring complex geometries that are challenging to produce using traditional methods. As 3D printing technology advances and becomes more cost-effective, the LCOE for designs like AMSIT is expected to continue decreasing.

Testing and Fieldwork

To ensure the durability of the 3D-printed materials, AMSIT researchers conducted laboratory tests to simulate lightning strikes on the blade tips. These tests included scenarios with direct strikes to a simulated lightning protection system, surface strikes away from the system, and strikes without any protection. The results from these tests will inform further development and optimization of the blade tips.

The team also used laser scanning to accurately match the 3D-printed tips to the existing blades. The outer shell of the blades was removed to attach the new tips and winglets, which were then subjected to ground-based structural tests. These components will be further tested at the Sandia Scaled Wind Farm Technology site in Lubbock, Texas, where they will undergo field demonstrations.

According to Brent Houchens, the AMSIT project exemplifies how 3D printing can enhance the performance and reduce the costs of wind energy. “The AMSIT project demonstrates how integrating technologies through 3D printing could reduce the cost of wind energy by improving aerodynamic performance and reducing repair costs,” he said. Following the completion of the project, the modified blade root and stub will be available for testing other novel tip designs, paving the way for future innovations in wind turbine technology.

Source: sandia.gov

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Swiss manufacturing automation firm SAEKI has secured $6.7 million in new funding, bringing its total funding to $8 million. The investment round was... read more »

News
SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Hospital Uses 3D Printed Models to Improve Surgical Planning

Hong Kong Eastern Hospital has developed new 3D printed models of newborn babies' lungs to help doctors practice treating pneumothorax, a potentially dangerous... read more »

Medical
Hospital Uses 3D Printed Models to Improve Surgical Planning

3D Printed Templates Guide Metal Formation Through Electroplating Process

A new manufacturing process combining 3D printing and electroplating has been developed to create complex metal structures with fine details. The hybrid method... read more »

News
3D Printed Templates Guide Metal Formation Through Electroplating Process

Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

The US Air Force is completing its evaluation of 3D-printed microvanes designed to reduce drag on C-17 Globemaster III transport aircraft. These small... read more »

Aerospace
Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

CoreTechnologie and Phasio have announced a new partnership to develop an automated solution for selective laser sintering (SLS) and multi jet fusion (MJF)... read more »

News
CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

Hands-on Review: Einstar VEGA Wireless 3D Scanner

the Einstar VEGA is an attractive feature-packed wireless device, allowing you to scan a range of differently sized items, both indoors, and outdoors.

News
Hands-on Review: Einstar VEGA Wireless 3D Scanner

Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Researchers at the Singapore University of Technology and Design (SUTD) have developed a new approach to 3D print complex bio-inspired structures using slow-curing... read more »

Materials
Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Elegoo Mars 5 Ultra Review – A Perfect Choice for Beginners

Elegoo has released the latest addition to their ever popular Mars line of resin 3D printers, in the form of the Mars 5... read more »

News
Elegoo Mars 5 Ultra Review - A Perfect Choice for Beginners

Minimizing Downtime in Additive Manufacturing Facilities

As an additive manufacturing company owner or manager, you would have a vested interest in minimizing downtime on the factory floor. Machine downtime... read more »

News
Minimizing Downtime in Additive Manufacturing Facilities

Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Puma's latest Mostro shoe collaboration with French designer Louis-Gabriel Nouchi is set to launch today, January 23, 2024. The new design transforms the... read more »

Fashion
Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
Anycubic

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing