3D Printing
News Videos Newsletter Contact us
Home / News / Infinity Turbine Introduces 3D Printed Electrodes for Saltwater Batteries and Electrocatalysis
Revopoint MetroX: Blue Laser Line and Full-field Structured Light 3D Scanner

Infinity Turbine Introduces 3D Printed Electrodes for Saltwater Batteries and Electrocatalysis

September 12, 2024

Infinity Turbine has introduced an innovative approach to electrode fabrication, combining fiber laser heat treating, additive manufacturing, and laser-induced carbonization. This new technology enables the transformation of carbon-rich materials, such as sugar and wood fibers, into hard carbon or graphene-like structures. The resulting 3D-printed electrodes are set to enhance the manufacturing process for Salgenx saltwater flow batteries, gas processing, and electrocatalyst applications.

Infinity Turbine Introduces 3D Printed Electrodes for Saltwater Batteries and Electrocatalysis
Image Credit: Infinity Turbine LLC

Advancing Saltwater Flow Batteries with 3D-Printed Electrodes

Salgenx saltwater flow batteries are known for their safe and environmentally friendly approach to grid-scale energy storage. Infinity Turbine’s introduction of 3D-printed carbon electrodes significantly boosts the battery’s performance by providing a high-conductivity, high-surface-area electrode structure. The combination of laser-induced graphene and customized 3D-printed geometries leads to faster ion exchange, improved energy density, and increased battery lifespan, all while using sustainable materials. Additionally, this manufacturing method reduces both production time and complexity through the use of just-in-time (JIT) technology, further lowering inventory costs.

The new electrode technology offers several advanced features that contribute to its efficiency. Infinity Turbine uses fiber lasers to induce carbonization in organic materials like sugar, transforming them into graphene-like carbon structures with excellent conductivity and structural integrity. This process takes place in a CO₂-flooded environment, which enhances carbonization efficiency by preventing combustion and ensuring high-purity carbon production. The 3D additive manufacturing process builds electrodes layer by layer, creating customized structures with improved surface area and mechanical strength, essential for enhancing energy storage. Furthermore, the technology integrates various battery materials quickly and efficiently through JIT manufacturing, allowing for the rapid development of components such as metallic powders and insulators. This combination of carbonization, 3D printing, and material flexibility enables the creation of highly efficient electrodes that meet the demands of energy storage and processing applications. The process can also incorporate mixed material layers, which are useful in gas processing and electrocatalysis applications.

These 3D-printed electrodes will greatly improve the performance of Salgenx saltwater batteries, which are already noted for their safety, cost-effectiveness, and environmental benefits. By enhancing battery charge times, energy density, and longevity, this new technology promises to deliver higher performance in renewable energy storage systems.

Expanding Research, Development, and Production Applications

The introduction of 3D-printed electrodes with selectable powdered materials opens new possibilities for research and development. It enables fast concept-to-reality materialization, streamlining product commercialization. The 3D fabrication process also paves the way for the development of machines dedicated to electrode and electrocatalyst production. This process could reshape manufacturing methodologies in a similar way to Tesla’s Gigapress, allowing for the creation of 3D-printed anodes and cathodes that form a complete electrolyzer cell.

Additional Applications: Gas Processing and Electrocatalysis

The versatility of Infinity Turbine’s 3D-printed carbon structures extends beyond energy storage. In gas processing, these carbon structures can be applied to in-situ processes, potentially enabling more efficient carbon capture and conversion systems. The high surface area and conductivity of the graphene-like materials are particularly beneficial for these applications, including electro-desalination systems that convert seawater into fresh water.

The 3D build concept is also well-suited for electrocatalyst applications. Infinity Turbine’s system can integrate advanced electrocatalyst technology, facilitating the conversion of CO₂ and water into valuable carbon-based products such as methylglyoxal (C3) and 2,3-furandiol (C4) with over 99% efficiency. These materials hold significant promise for sustainable manufacturing, offering non-toxic alternatives for industrial products like plastics and adhesives, where methylglyoxal could replace formaldehyde.

A Breakthrough in Energy Solutions

Infinity Turbine’s development of 3D-printed carbon electrodes marks a significant leap forward in energy storage and electrocatalyst technology. These carbon-based materials are set to enhance the efficiency of Salgenx saltwater batteries and transform gas processing applications. By utilizing sustainable organic materials such as sugar and wood fibers, Infinity Turbine underscores its commitment to environmentally friendly manufacturing and clean energy innovation.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Swiss manufacturing automation firm SAEKI has secured $6.7 million in new funding, bringing its total funding to $8 million. The investment round was... read more »

News
SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Hospital Uses 3D Printed Models to Improve Surgical Planning

Hong Kong Eastern Hospital has developed new 3D printed models of newborn babies' lungs to help doctors practice treating pneumothorax, a potentially dangerous... read more »

Medical
Hospital Uses 3D Printed Models to Improve Surgical Planning

3D Printed Templates Guide Metal Formation Through Electroplating Process

A new manufacturing process combining 3D printing and electroplating has been developed to create complex metal structures with fine details. The hybrid method... read more »

News
3D Printed Templates Guide Metal Formation Through Electroplating Process

Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

The US Air Force is completing its evaluation of 3D-printed microvanes designed to reduce drag on C-17 Globemaster III transport aircraft. These small... read more »

Aerospace
Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

CoreTechnologie and Phasio have announced a new partnership to develop an automated solution for selective laser sintering (SLS) and multi jet fusion (MJF)... read more »

News
CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

Hands-on Review: Einstar VEGA Wireless 3D Scanner

the Einstar VEGA is an attractive feature-packed wireless device, allowing you to scan a range of differently sized items, both indoors, and outdoors.

News
Hands-on Review: Einstar VEGA Wireless 3D Scanner

Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Researchers at the Singapore University of Technology and Design (SUTD) have developed a new approach to 3D print complex bio-inspired structures using slow-curing... read more »

Materials
Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Elegoo Mars 5 Ultra Review – A Perfect Choice for Beginners

Elegoo has released the latest addition to their ever popular Mars line of resin 3D printers, in the form of the Mars 5... read more »

News
Elegoo Mars 5 Ultra Review - A Perfect Choice for Beginners

Minimizing Downtime in Additive Manufacturing Facilities

As an additive manufacturing company owner or manager, you would have a vested interest in minimizing downtime on the factory floor. Machine downtime... read more »

News
Minimizing Downtime in Additive Manufacturing Facilities

Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Puma's latest Mostro shoe collaboration with French designer Louis-Gabriel Nouchi is set to launch today, January 23, 2024. The new design transforms the... read more »

Fashion
Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
Anycubic

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing