3D Printing
News Videos Newsletter Contact us
Home / Company / 3D Systems / The Future of AM-Assisted Sand Casting
Revopoint MetroX: Blue Laser Line and Full-field Structured Light 3D Scanner

The Future of AM-Assisted Sand Casting

January 12, 2023

The sand casting process involves creating a mold from casting sand and filling it with liquid metal to create a solid part. It is an ancient process that has been improved in recent years due to advancements in 3D printing.

This is especially true when using a hybrid subtractive / additive approach, which 3D Systems has been discussing recently.

Read on to learn about the future of sand casting.

Hybrid Manufacturing

One of the key benefits of incorporating 3D printing into the sand casting process is that it allows for greater design flexibility. Traditional sand casting has always been good for creating complex geometry (and internal channels), which is why it has been used for manufacturing engine blocks for years.

Now thanks to AM, the final part geometry can benefit from even more complexity, and when combined with subtractive methods such as milling, the dimensional accuracy and surface finish can be greatly enhanced.

You can see the AM-assisted sand casting workflow, along with some pictures of the cast parts in the graphic below.

sand casting process
AM-assisted sand casting (Image credit: Proveedora de Servicios y Suministros Industriales )

Despite the integration of 3D printing technology, the traditional sand casting methodology remains largely unchanged.

The process still involves using a replica or pattern of the intended final part, which is then placed within a two-part mold and cores to create internal passages when needed. Specialized molding sand is still compacted within the core and around the pattern, and an in-gate, sprue and pouring basin are still required. The final step, pouring in the molten metal, remains unchanged.

What has changed is the fabrication of the pattern itself. Using AM to produce the pattern provides the ability to create more complex and intricate designs, with greater surface finish and dimensional accuracy. The pattern fabrication process is also accelerated thanks to AM, and as a result, use of a hybrid approach can significantly reduce lead time and cost associated with sand casting.

Pellet Printing

When 3D Systems acquired Colorado-based Titan Robotics last year, they gained the benefits of the large format pellet printing / hybrid CNC system that the company had on offer.

In particular, Titan Robotics has a printer named the Atlas HS, which features dual print heads for both pellet and filament extrusion, plus a CNC controlled spindle for milling, drilling, boring and threading. This allows the rapid deposition of a number of low-cost thermoplastics, plus a significantly higher quality of surface finish that can be provided by 3D printing alone.

This makes the Atlas an ideal solution for tasks such as the manufacturer of a variety of toolings, including sand casting patterns.

titan
Hybrid approach on the Titan HS. (Image credit 3D Systems / Titan Robotics)

Tips for Sand Casting with AM

Not all plastics are created equally, and 3D Systems has some guidelines on helping you to select the best plastic for your sand casting needs.

To get sand casting with a superior surface finish, it is recommended to use high-performance polymers like glass or carbon fiber-filled ABS, PC, Nylon or PEKK. They’re way more durable and can be sanded or machined much better than lower temperature polymers like PLA and PETG.

Also it is worth noting that most primers and paints stick well to high-performance polymers except for polyolefins (PP, PE).

The company also advises that using stronger polymers can result in higher throughputs, thanks to the higher wear resistance offered by such plastics. One report states that using such polymers can result in up to 30,000 cycles with almost no visible or measurable wear.

For extra value, 3D Systems recommends printing patterns in segments for certain applications.

This reduces print issue impact and produces tools in parallel over multiple printers rather than serial. It is also beneficial if there is to be excessive wearing on specific parts of the pattern. For larger patterns, a well-worn pattern section can be replaced, rather than having to print the entire pattern again.

Conclusion

As you can see, the integration of 3D printing technology into the sand casting process has brought about a multitude of benefits, including greater design flexibility, improved efficiency, cost savings, and enhanced geometric features.

If you would like to know more about the Atlas HS hybrid system from Titan Robotics, head on over to this link.

And if you would like to see the deep dive into how hybrid manufacturing can help your company with sand casting, then you can download the paper from 3D Systems right here.

Download Paper
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Swiss manufacturing automation firm SAEKI has secured $6.7 million in new funding, bringing its total funding to $8 million. The investment round was... read more »

News
SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Hospital Uses 3D Printed Models to Improve Surgical Planning

Hong Kong Eastern Hospital has developed new 3D printed models of newborn babies' lungs to help doctors practice treating pneumothorax, a potentially dangerous... read more »

Medical
Hospital Uses 3D Printed Models to Improve Surgical Planning

3D Printed Templates Guide Metal Formation Through Electroplating Process

A new manufacturing process combining 3D printing and electroplating has been developed to create complex metal structures with fine details. The hybrid method... read more »

News
3D Printed Templates Guide Metal Formation Through Electroplating Process

Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

The US Air Force is completing its evaluation of 3D-printed microvanes designed to reduce drag on C-17 Globemaster III transport aircraft. These small... read more »

Aerospace
Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

CoreTechnologie and Phasio have announced a new partnership to develop an automated solution for selective laser sintering (SLS) and multi jet fusion (MJF)... read more »

News
CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

Hands-on Review: Einstar VEGA Wireless 3D Scanner

the Einstar VEGA is an attractive feature-packed wireless device, allowing you to scan a range of differently sized items, both indoors, and outdoors.

News
Hands-on Review: Einstar VEGA Wireless 3D Scanner

Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Researchers at the Singapore University of Technology and Design (SUTD) have developed a new approach to 3D print complex bio-inspired structures using slow-curing... read more »

Materials
Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Elegoo Mars 5 Ultra Review – A Perfect Choice for Beginners

Elegoo has released the latest addition to their ever popular Mars line of resin 3D printers, in the form of the Mars 5... read more »

News
Elegoo Mars 5 Ultra Review - A Perfect Choice for Beginners

Minimizing Downtime in Additive Manufacturing Facilities

As an additive manufacturing company owner or manager, you would have a vested interest in minimizing downtime on the factory floor. Machine downtime... read more »

News
Minimizing Downtime in Additive Manufacturing Facilities

Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Puma's latest Mostro shoe collaboration with French designer Louis-Gabriel Nouchi is set to launch today, January 23, 2024. The new design transforms the... read more »

Fashion
Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
Anycubic

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing