3D Printing
News Videos Newsletter Contact us
Home / News / AM Vocal Cord Research Leads to Development of Novel Functional Silicone
Revopoint MetroX: Blue Laser Line and Full-field Structured Light 3D Scanner

AM Vocal Cord Research Leads to Development of Novel Functional Silicone

December 28, 2022

Researchers at Brigham Young University have published a paper detailing the development of an ultrasoft silicone with a functional stiffness gradient, and they have done so while researching how to print vocal cords.

Why would anyone need to 3D print a vocal cord in the first place?

Read on to know more.

Vocal Folds

Vocal cords, also known as vocal folds, are the two thin bands of smooth muscle tissue located in the larynx at the top of the trachea. These folds are responsible for producing sound such as speech or singing when they vibrate as air (your breath) passes through them. The pitch of the sound produced by the vocal folds is determined by the tension and thickness of the folds, as well as the rate at which they vibrate, much like a stringed instrument.

Researchers in the field of phonetics use synthetic models of the vocal folds to see how factors such as the frequency of vibration and the minimum lung pressure needed to initiate vibration affect human voice production.

vocal folds
Various printed models showing layers of the vocal folds. (Image credit Brigham Young University)

These models are often made with layers of silicone of different stiffness to mimic the structure of human vocal folds, which are composed of various types of tissue.

One common method for creating synthetic models involves casting layers one after another. This method can produce models that have vibratory characteristics similar to human vocal folds. However, models produced with this method tend to have a high rate of failure, a relatively long fabrication time, and results in models with distinct layers. The layers in a real vocal cord are less distinct and more gradual.

Therefore, accurate and reliable models need to be robust, and have spatial variations in stiffness. And that’s why this research into AM-produced vocal cords has been conducted.

The image above shows the results of the vocal fold printing experiment.

Printing of Vocal Folds

In the research by Brigham Young research, a custom printing technique was developed to create silicone parts with varying levels of stiffness.

First up, the design for each vocal fold section was modeled in CAD before being sent to a custom slicing software. The material properties for each section were assigned a specific stiffness value within the slicer. The slicer then used this information to determine the optimal ratio of materials from extruders A and B needed to achieve the desired stiffness for each section.

Based on this calculation, the slicer generated g-code instructions to control the 3D printer and print the sections with the desired stiffness.

The printing was achieved by using two separate extruders, designated “A” and “B”, to deposit UV-cure silicone into a special support matrix made of a gel-like silicone oil.

3D printing apparatus
The printing apparatus.(Image credit Brigham Young University)

Both of the extruders were filled with uncured silicone that would each solidify to different stiffness levels.

By adjusting the extrusion rates of the two extruders, the printed parts were able to have a range of cured stiffnesses that ranged between those of the “A” and “B” materials when the ratios were changed.

Once the printing was complete, the parts were cured, removed from the support matrix, and cleaned for further analysis.

Conclusion

The printed silicone samples had a tensile elastic modulus range of 1.11 kPa to 27.1 kPa, which was classed as ultrasoft at the lower end, and therefore suitable for synthetic vocal fold modeling.

Additional cuboid test specimens were printed with these methods, to test that the researchers’ finite element simulations were robust in terms of stiffness variation, and were deemed to be agreeable.

So overall, mission accomplished. Printed vocal cords are a reasonable substitute for single material models, and traditionally casted models. However, regarding the desired mechanical reliability of the specimens, the researchers noted that the viability of the printed models was not yet equal to that of the cast models. This was attributed to the fact that this printing method is new, and vocal fold models with lower failure rates will be produced as the technology matures.

You can read the full paper titled “Three-Dimensional Printing of Ultrasoft Silicone with a Functional Stiffness Gradient” at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Swiss manufacturing automation firm SAEKI has secured $6.7 million in new funding, bringing its total funding to $8 million. The investment round was... read more »

News
SAEKI Secures $6.7M to Advance Manufacturing Automation in Switzerland

Hospital Uses 3D Printed Models to Improve Surgical Planning

Hong Kong Eastern Hospital has developed new 3D printed models of newborn babies' lungs to help doctors practice treating pneumothorax, a potentially dangerous... read more »

Medical
Hospital Uses 3D Printed Models to Improve Surgical Planning

3D Printed Templates Guide Metal Formation Through Electroplating Process

A new manufacturing process combining 3D printing and electroplating has been developed to create complex metal structures with fine details. The hybrid method... read more »

News
3D Printed Templates Guide Metal Formation Through Electroplating Process

Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

The US Air Force is completing its evaluation of 3D-printed microvanes designed to reduce drag on C-17 Globemaster III transport aircraft. These small... read more »

Aerospace
Air Force Adding 3D-Printed Drag Reducers to Globemaster Fleet

CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

CoreTechnologie and Phasio have announced a new partnership to develop an automated solution for selective laser sintering (SLS) and multi jet fusion (MJF)... read more »

News
CoreTechnologie and Phasio Join Forces to Streamline Powder Bed 3D Printing

Hands-on Review: Einstar VEGA Wireless 3D Scanner

the Einstar VEGA is an attractive feature-packed wireless device, allowing you to scan a range of differently sized items, both indoors, and outdoors.

News
Hands-on Review: Einstar VEGA Wireless 3D Scanner

Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Researchers at the Singapore University of Technology and Design (SUTD) have developed a new approach to 3D print complex bio-inspired structures using slow-curing... read more »

Materials
Bio-Inspired 3D Printing Breakthrough Creates Flexible Materials for Wearable Tech

Elegoo Mars 5 Ultra Review – A Perfect Choice for Beginners

Elegoo has released the latest addition to their ever popular Mars line of resin 3D printers, in the form of the Mars 5... read more »

News
Elegoo Mars 5 Ultra Review - A Perfect Choice for Beginners

Minimizing Downtime in Additive Manufacturing Facilities

As an additive manufacturing company owner or manager, you would have a vested interest in minimizing downtime on the factory floor. Machine downtime... read more »

News
Minimizing Downtime in Additive Manufacturing Facilities

Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Puma's latest Mostro shoe collaboration with French designer Louis-Gabriel Nouchi is set to launch today, January 23, 2024. The new design transforms the... read more »

Fashion
Puma and Louis-Gabriel Nouchi Release Mostro Mule Collaboration

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
Anycubic

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing